Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473084

RESUMEN

The local pig breeds in Guizhou possess exceptional meat quality, robust adaptability, and resilience to harsh feeding conditions, making them ideal for producing high-quality pork. With over 10 local pig breeds in the region, we focused on 7 specific breeds: Baixi pigs (BX), Congjiang Xiang pigs (CJX), Guanling pigs (GL), Jianhe White Xiang pigs (JHBX), Jiangkou Luobo pigs (JKLB), Kele pigs (KL), and Qiandong Hua pigs (QDH). Unfortunately, these breeds face threats such as introduced species and inbreeding, resulting in a decline in population size and numbers. To better protect and utilize these breeds, we employed genome-wide single-nucleotide polymorphism (SNP) markers to investigate the population structure, genetic diversity, and selection characteristics of 283 pigs across these seven breeds. Our findings revealed distinct ancestral sources between Chinese and Western pig breeds, as demonstrated by principal component analysis, adjacent tree analysis, and ADMIXTURE analysis. Notably, JHBX exhibited a distant genetic relationship from the other six local pig breeds in Guizhou province, showcasing unique genetic characteristics. While the genetic diversity of the six Chinese native pig populations, excluding JHBX, was generally moderate in Guizhou province, the JHBX population displayed low genetic diversity. Therefore, it is imperative to intensify selection efforts to prevent inbreeding decline in JHBX while further enhancing the protection measures for the other six pig populations. Additionally, we identified candidate genes influencing the size disparity among pigs in Guizhou province through signal selection. Our study outcomes serve as a reference for developing effective conservation and utilization plans for pig breeds in Guizhou province and deepen our understanding of the genetic mechanisms underlying pig body size.

2.
DNA Res ; 31(2)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447059

RESUMEN

Transposable elements (TEs) mobility is capable of generating a large number of structural variants (SVs), which can have considerable potential as molecular markers for genetic analysis and molecular breeding in livestock. Our results showed that the pig genome contains mainly TE-SVs generated by short interspersed nuclear elements (51,873/76.49%), followed by long interspersed nuclear elements (11,131/16.41%), and more than 84% of the common TE-SVs (Minor allele frequency, MAF > 0.10) were validated to be polymorphic. Subsequently, we utilized the identified TE-SVs to gain insights into the population structure, resulting in clear differentiation among the three pig groups and facilitating the identification of relationships within Chinese local pig breeds. In addition, we investigated the frequencies of TEs in the gene coding regions of different pig groups and annotated the respective TE types, related genes, and functional pathways. Through genome-wide comparisons of Large White pigs and Chinese local pigs utilizing the Beijing Black pigs, we identified TE-mediated SVs associated with quantitative trait loci and observed that they were mainly involved in carcass traits and meat quality traits. Lastly, we present the first documented evidence of TE transduction in the pig genome.


Asunto(s)
Elementos Transponibles de ADN , Polimorfismo Genético , Animales , Porcinos/genética , Sitios de Carácter Cuantitativo , Elementos de Nucleótido Esparcido Corto , Genética de Población
3.
J Anim Sci Biotechnol ; 14(1): 136, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805653

RESUMEN

BACKGROUND: During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS: Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.

4.
J Agric Food Chem ; 71(42): 15874-15883, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37847170

RESUMEN

To study the characteristics of genes and metabolites related to intramuscular fat (IMF) content with less influence by breed background and individual differences, the skeletal muscle samples from 40 Beijing black pigs with either high or low IMF content were used to perform transcriptome and metabolome analyses. About 99 genes (twofold-change) were differentially expressed. Up-regulated genes in the high IMF pigs were mainly related to fat metabolism. The key genes in charge of IMF deposition are ADIPOQ, CIDEC, CYP4B1, DGAT2, LEP, OPRL1, PLIN1, SCD, and THRSP. KLHL40, TRAFD1, and HSPA6 were novel candidate genes for the IMF trait due to their high abundances. In the low IMF pigs, the differentially expressed genes involved in virus resistance were up-regulated. About 16 and 18 differential metabolites (1.5 fold-change) were obtained in the positive and negative modes, respectively. Pigs with low IMF had weaker fatty acid oxidation due to the down-regulation of various carnitines. Differentially expressed genes were more important in determining IMF deposition than differential metabolites because relatively few differential metabolites were obtained, and they were merely the products under the physiological status of diverged IMF content. This study provided valuable information for further studies on IMF deposition.


Asunto(s)
Metabolismo de los Lípidos , Transcriptoma , Porcinos/genética , Animales , Beijing , Metabolismo de los Lípidos/genética , Fenotipo , Músculo Esquelético/metabolismo , Tejido Adiposo/metabolismo
5.
Food Chem ; 404(Pt A): 134699, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36444028

RESUMEN

Chinese indigenous pig breeds have higher intramuscular fat content (IMF) and better meat quality than Western commercial pigs. The differential metabolites and lipids in the skeletal muscle associated with IMF contents and meat flavor in Laiwu and Yorkshire pigs were investigated in this study. As a result, 113 differential metabolites and 54 differential lipids were discovered. Lipidomics revealed that the Laiwu pig had a fast lipid droplet formation and contained more triglyceride than the Yorkshire pig, which was corresponded to its high IMF contents. Both the lipidomics and metabolomics results indicated that the Laiwu pig had a higher mitochondrial content and aerobic respiration, due to its larger percentage of oxidative fibers. In addition, differential metabolites, such as oxoglutaric acid, fumarate, and l-aspartate, were thought to be important flavor precursors contributing to the Laiwu pig's improved pork taste.


Asunto(s)
Lipidómica , Carne de Cerdo , Porcinos , Animales , Metabolómica , Fumaratos , Triglicéridos
6.
Biology (Basel) ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36358336

RESUMEN

Loin muscle area (LMA) is an important meat production trait and plays a key role in determining carcass leanness. Genome-wide association study (GWAS) and RNA sequencing (RNA-seq) analysis were used to identify candidate LMA genes in Beijing Black pigs, a popular breed among consumers in northern China. Ten single nucleotide polymorphisms (SNPs) in sus scrofa chromosome (SSC) 9 were significantly associated with LMA. These SNPs were mapped to a 2.90 Mb (84.94-87.84 Mb) region. A total of 11 annotated genes were mapped on this region, namely MEOX2, CRPPA, SOSTDC1, LRRC72, ANKMY2, BZW2, TSPAN13, AGR2, AHR, SNX13, and HDAC9. In addition, RNA-seq analysis was performed between the high- and low-LMA groups, and 329 differentially expressed genes (DEGs) were identified. Further, Kyoto Encyclopedia of Genes and Genomes analysis based on DEGs revealed that the JAK/STAT signaling pathway and oxytocin signaling pathway may be responsible for LMA. Both GWAS and RNA-seq analysis identified the HDAC9 gene, indicating that it may be an important candidate gene affecting LMA in Beijing Black pigs. The findings provide valuable molecular insights into the mechanisms that influence LMA content in pigs, which can be utilized in targeted approaches to enhance meat quality and commercial profitability.

7.
Anim Genet ; 53(5): 690-695, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35776924

RESUMEN

As one of the few animals with variation in the number of rib pairs (RIB), the pig is a good model to study the mechanism of RIB regulation. Quantitative trait loci (QTL) for porcine RIB are present on Sus scrofa chromosome 7 (SSC7). Although several candidate genes exist in this QTL region on SSC7, the causal gene has yet to be verified. Beijing Black pig with 14-17 RIB is a good population for candidate gene mining and 1104 individuals were genotyped using the Illumina Porcine 50K BeadChip. A total of 14 SNPs from 95.49 to 97.78 Mb on SSC7 showed genome-wide significant association with RIB. On SSC7, a locuszoom plot using pairwise linkage disequilibrium displayed the narrowest linkage region encompassing only two genes, ABCD4 and VRTN. In mice, a transcriptome expression profile was obtained using three embryos at E9.5 (the critical period for rib formation). ABCD4 was highly expressed, but no expression of VRTN was detected. On SSC6, there were four genome-wide significant SNPs from 106.42 to 106.92 Mb associated with RIB. GREB1L and MIB1, in this region, were regarded as novel candidate genes. These results revealed a crucial candidate causal gene on SSC7 and novel genes on SSC6 for rib number and provided interesting new insights into its genetic basis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Beijing , Estudio de Asociación del Genoma Completo/veterinaria , Ratones , Polimorfismo de Nucleótido Simple , Costillas , Sus scrofa/genética , Porcinos/genética
8.
Animals (Basel) ; 10(11)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266466

RESUMEN

The number of vertebrae (NV), especially the number of thoracic vertebrae (NTV), varies among pig breeds. The NTV is controlled by vertebral segmentation and the number of somites during embryonic development. Although there is a high correlation between the NTV and NV, studies on a fixed NV have mainly considered the absolute numbers of thoracic vertebrae instead of vertebral segmentation. Therefore, this study aimed to discover variants associated with the NTV by considering the effect of the NV in pigs. The NTV and NV of 542 F2 individuals from a Large White × Minzhu pig crossbreed were recorded. All animals were genotyped for VRTN g.19034 A > C, LTBP2 c.4481A > C, and 37 missense or splice variants previously reported in a 951-kb interval on SSC7 and 147 single nucleotide polymorphisms (SNPs) on SSC14. To identify NTV-associated SNPs, we firstly performed a genome-wide association study (GWAS) using the Q + K (population structure + kinship matrix) model in TASSEL. With the NV as a covariate, the obtained data were used to identify the SNPs with the most significant genome-wide association with the NTV by performing a GWAS on a PorcineSNP60K Genotyping BeadChip. Finally, a conditional GWAS was performed by fixing this SNP. The GWAS showed that 31 SNPs on SSC7 have significant genome-wide associations with the NTV. No missense or splice variants were found to be associated with the NTV significantly. A linkage disequilibrium analysis suggested the existence of quantitative trait loci (QTL) in a 479-Kb region on SSC7, which contained a critical candidate gene FOS for the NTV in pigs. Subsequently, a conditional GWAS was performed by fixing M1GA0010658, the most significant of these SNPs. Two SNPs in BMPR1A were found to have significant genome-wide associations and a significant dominant effect. The leading SNP, S14_87859370, accounted for 3.86% of the phenotypic variance. Our study uncovered that regulation variants in FOS on SSC7 and in BMPR1A on SSC14 might play important roles in controlling the NTV, and thus these genetic factors may be harnessed for increasing the NTV in pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA